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A theory of cell-volume response to abrupt or gradual changes in extracellular
osmotic conditions is outlined. The coupled transport of water and impermeable
and semipermeable solutes is considered. Semipermeable solutes, including relative-
ly small lipophilic molecules, like glycerol or urea, are permitted to absorb to the
membranes of internal organelle bodies, where they diffuse with a configuration-
specific lateral diffusion coefficient. Impermeable solutes (such as salts) are excluded
from internal organelles, resulting in a significant osmotically inactive cell-volume
fraction. Cell-volume expansion or contraction in response to anisosmotic conditions
is shown to depend strongly on the internal absorption behaviour of semipermeable
solutes, as well as upon membrane permeation parameters. The results of the analysis
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lay the foundations for accurate determination of membrane permeability variables,
of importance to a variety of cellular transport processes, including those involved
in cell cryopreservation.

1. Introduction

Present understanding of cellular response to osmotic stimuli derives largely from
observations of cell volume changes (Liu et al. 1995) and lysis (Gao et al. 1992)
following exposure of cells to osmotic stresses. These responses have, at least in part,
been successfully attributed to the relative permeability of cell membranes to water
and membrane-penetrating solutes, such as glycerol and ethylene glycol (Gilmore et
al. 1995). However, many osmotic phenomena of major importance to the health of
the cell have yet to be fully understood—or quantified in a way that makes existing
understanding predictive; these phenomena include the effects of osmotic stresses on
the cellular and transmembrane transport of membrane-permeable or semipermeable
molecules, the role of permeant absorption to internal organelle membranes, the
reversibility of biochemical changes caused by osmotic stresses and the effects of
osmotic stresses on metabolic intracellular reactions. This article aims to address
some of these outstanding questions.

The basic problem that is addressed concerns the radial dilatation of a spherical
cell membrane that accompanies a sudden or gradual change in extracellular salt or
semipermeable solute concentration. Owing to the fluidity of animal cell membranes
(as well as bacteria and many protozoa), combined with their innate impermeability
to small ions, hypertonic (high salt) and hypotonic (low salt) conditions in the extra-
cellular environment can produce substantial osmotic stresses whose effects are to
cause the plasma membrane to shrink or expand. While most cell membranes possess
special transport mechanisms to relieve osmotic imbalances (e.g. sodium and potassi-
um ATPases), very large osmotic imbalances are possible in physiological conditions
that cannot be relieved sufficiently rapidly by membrane transport processes prior
to cell shape change. For example, inhaled liquid aerosols often enter the mouth at
isosmotic conditions, however, owing to the high humidity in the airways, they can
become increasingly hypotonic as they penetrate deeper into the airways and alve-
oli. Deposition on lung epithelia of these hypotonic solutions can result in expansion
of epithelial cells, potentially lysing epithelial cells or permeabilizing the epithelial
barrier (Patton 1996).

An obvious application of this work is towards the development of protocols for
the cryopreservation of living cells. The cryopreservation of human, animal and plant
cells depends critically upon the ability of cells to survive osmotic stresses, such as
arise during freezing and thawing protocols (Hammerstedt et al. 1990). The cry-
opreservation of human blood, elite or endangered germ plasma and plant cells or
organs (often derived by genetically modified plant tissue cultures)—each provide
important examples where cells are exposed to significant osmotic stresses. Major
questions that remain unanswered as regards the success of freezing and thawing
protocols in the cryopreservation industry relate to the irreversibility of membrane
structural changes after thawing (Carruthers & Melchior 1988; Quinn 1989; Foote
1984), the localization of cryoprotectant in internal and external cell membranes
(O’Leary & Levin 1984; Bashford et al. 1986; Hammerstedt et al. 1990), intracellular
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structural changes following cryopreservation (Courtens & Paquignon 1985) and the
reason(s) for the need to impose dissimilar thawing and freezing kinetics (Mazur
et al. 1984; Watson 1990). Each of these questions requires a more complete under-
standing of water and solute transport into and out of cells in anisosmotic conditions.
Lacking this understanding, freezing and thawing of cells is performed by ‘matching’
the rates of freezing and thawing kinetics (Mazur 1984), without a clear knowledge of
why, with the result that progress toward optimization of cryopreservation protocols
has been limited.

Our attention in this study is strictly to the theoretical description of spherical
cells undergoing radial expansions and contractions owing to homogeneous osmot-
ic imbalances. Cells, however, can be of a variety of shapes, including cylindrical
and disk-like shapes, osmotic stresses may be inhomogeneous, and molecules such
as salts, that are impermeable on a short time scale, may be permeable on a longer
time scale owing to ion transporters and other active transport processes. Our aim
in restricting our focus in this article is to provide a sufficiently detailed consider-
ation so that generalization to other scenarios can be relatively straightforwardly
made in the future. In terms of practical utility, a companion article (Batycky et al.
1998) provides a paradigmatic application of this work for interpretation of osmotic
challenge experiments, particularly as an aid in the development of cryopreservation
protocols.

The arrangement of this article is as follows: having defined basic concentration
variables in the remainder of §1, cell velocity variables are defined (§2), and in §3
the kinematics of non-material membrane motion are quantified. In §§ 4 and 5, water,
salt and semipermeable solute transport is considered. The main development of cell
volume response to salt and semipermeable solute changes is considered in §§ 6 and
7, respectively. A discussion of results and generalization to more diverse conditions
is provided in §§ 7 and 8.

(a ) Definition of concentration variables
Consider a cell of volume V containing Nsalt moles of salt distributed uniformly

throughout the cell interior, or cytosol. We define the mean salt concentration C i
salt as

C i
salt =

moles of salt
total cell volume

=
Nsalt

V
, (1.1)

meaning that the cell is regarded as a homogeneous body throughout which salt can
be distributed. However, owing to the inability of salt (or possibly semipermeable
solute) to penetrate various organelles of the cell, a finite ‘non-osmotically’ active
volume Vb exists within the cell, so that the actual concentration within the cytosol,
in the conditions considered here, is

C i
salt =

moles of salt
cytosol or osmotically active volume

=
Nsalt

V − Vb
. (1.2)

It is apparent that these two concentrations are related by

C i
salt = C i

salt(1− φ), (1.3)

where φ = Vb/V is the volume fraction of osmotically inactive intracellular compart-
ments (or organelles).

Consider now a second semipermeable solute (sp), that absorbs very rapidly to
internal organelle membranes (of total membrane area sm) of the cell. In equilibrium
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Figure 1. A qualitative response of a cell subjected to hyposmotic conditions. At time t = 0, the
cell has a higher internal salt concentration C i

salt than that of the surounding medium Ce
salt. As

a result, the cell expands until the two concentrations are equalized.

conditions, the mean semipermeable solute cell concentration is

C i
sp = Nsp/V, (1.4)

whereas the semipermeable solute concentration C i
sp uniformly distributed through-

out the cytosol, and absorbed to internal membranes with Henry’s law absorption
coefficient k, is given by

C i
sp(V − Vb) + C i

spksm + C i
spKVb = Nsp, (1.5)

whence
C i

sp = C i
sp(1− φ+ kα+Kφ), (1.6)

with α = sm/V the specific surface area of organelle membranes and K the partition
coefficient into the organelles. While equations (1.3) and (1.6) have been defined here
in equilibrium, point-wise counterparts can be derived in non-equilibrium conditions
of identical form (Edwards & Davis 1995), hence equations (1.3) and (1.6) will be
used subsequently in both equilibrium and non-equilibrium conditions. Particularly,
C i

sp and C i
salt will be regarded as volume integrals over a cellular volume that is small

compared to the cell size though large compared to the volume of an organelle. Given
that a characteristic organelle dimension is 100 nm (see §7 d) and that of the cell
≈ 10 µm, this implies a cellular volume average over a volume ca. 0.26 µm3, which
is much larger than the organelle volume (ca. 4 × 10−3 µm3) and smaller than the
cell volume (ca. 4189 µm3).

Consider, for simplicity, the transient evolution of a spherical cell from one volume
to another in hyposmotic conditions, as in figure 1. Initially, the salt concentration
inside the cell C i

salt is larger than in the extracellular fluid Ce
salt. This gives rise to

a higher osmotic pressure inside the cell, which in turn causes the cell to expand
as water enters the cell, ultimately diluting the internal salt concentration until the
two are equal. While the initial and final volumes are given by (1.2), the dependence
of the transient volume evolution upon the hydraulic membrane permeability Lp,
among other transport properties, remains to be determined.

In the presence of a semipermeable solute, such as a cryoprotectant, this transient
evolution is rather more complex. Consider, as an example, the final stage of a typical
thawing cycle (figure 2) when cryoprotectant is removed from a thawed cell. Initially,
the salt concentrations both inside and outside the cell are equal, however, there is
cryoprotectant within the cell while there is none in the isosmotic bath. This config-
uration causes the cell to initially expand as a result of the higher (semipermeable)
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Figure 2. The qualitative response of a cell in the presence of a cryoprotectant. This is an example
of a thawing cycle, where at time t = 0 the cell containing cryoprotectant is immersed in a fully
thawed isosmotic bath. Initially the cell expands due to its higher concentration of intracellular
cryoprotectant. This expansion is reversed both due to the lower concentration of salt within
the cell and the transport of cryoprotectant out of the cell. Ultimately, the cell reverts back to
its original size as all the cryoprotectant has escaped.

cryoprotectant concentration within the cell C i
sp relative to the bath Ce

sp
∼= 0. This

expansion is ultimately reversed both due to the now lower salt concentration within
the cell and the escape of cryoprotectant across the cell membrane and into the bath.
Eventually, the cell attains its original size when all the cryoprotectant has escaped.
This transient behaviour will depend not only on the hydraulic permeability Lp, but
on cryoprotectant membrane properties such as the reflection coefficient σ and the
permeability Psp. A dependence upon the intracellular cryoprotectant diffusivity D∗sp
will also be observed.

In the next sections, appropriate governing equations and boundary conditions are
developed to describe this dynamic cellular problem, following which analytical and
numerical solutions are obtained describing the cell volume response to anisosmotic
conditions of the kind discussed here.

2. Cellular velocity distribution

A major question that must first be answered concerns whether the response of a
spherical cell to anisosmotic conditions is convectively or diffusively driven. Figure 3
shows a spherical coordinate system geometrically centred within a cell. The cell is
assumed to be a perfect sphere with radius R. Because of the symmetry of the cell
and the fact that a uniform expansion or contraction of the cell in the r-direction
preserves this symmetry, the resultant velocity field is independent of θ and φ. This
uniform expansion implicitly requires that the membrane properties Lp, σ and Psp
are also independent of position along the membrane. Furthermore, the expansion
or contraction strictly in the r-direction does not give rise to flow in the θ- or φ-
directions, i.e. vθ = vφ = 0. The fluid velocity profile within the cell may then be
generally represented by

v = irvr(r). (2.1)
Since the cytosolic fluid is incompressible, the continuity equation along with (2.1)
gives

∇ · v =
1
r2

d
dr

(r2vr) = 0, (2.2)
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2464 R. P. Batycky, R. Hammerstedt and D. A. Edwards

Figure 3. Spherical coordinate system placed at the centre of an idealized cell. The cell has a
radius R.

which has the solution
vr(r) = A/r2, (2.3)

with A an arbitrary constant. To avoid the singularity at r = 0, we require A = 0.
This yields the somewhat trivial but important result

v = 0, (2.4)

at least for this simplified cell geometry. This means that the fluid does not move as
a consequence of an osmotic expansion or contraction of the cell membrane, rather
the membrane simply sweeps out the intra- or extra-cellular fluid as a consequence of
osmotic stresses exerted on the membrane. Of course, to an observer situated on the
moving membrane, the water nonetheless appears to be in motion. Thus, the single
driving force for redistribution of solutes in this problem is molecular diffusion.

Note that upon expansion or contraction of the cell membrane, the movement of
organelles within the cytosol is driven entirely by diffusion. That is, there exists no
tethering of organelles to the plasma membrane. The problem therefore differs in
this respect from the related problem of an expanding porous body considered by
Frankel et al. (1991). In their problem, expansion of the porous ‘solid’ gives rise to
redistribution of the interstitial fluid by convection. It is furthermore noteworthy
that the organelles are neutrally buoyant, whence convection induced by diffusion as
treated by Camacho & Brenner (1995) is not a source of concern. Solute diffusion may
introduce a second-order velocity effect. However, as attention will subsequently be
constrained to low Peclet circumstances, this second-order contribution lies beyond
the scope of our analysis.

3. Cellular transport theorem

The various boundary conditions required at the moving cell boundary can be
derived in the form of a generalized Reynolds transport law (Aris 1960). Figure 4
shows the cell and associated control volume over which mass and mole balances are
ultimately to be formed. Although the problem considered here is purely diffusive
(v = 0), the membrane velocity u is non-zero; in other words, the membrane is
non-material .

Let ψ(r, t) represent a continuous volumetric density field (such as mass density,
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Figure 4. The non-material control volume across which mass is exchanged. This non-material
nature is characterized by a membrane velocity u which is different than the mass average or
fluid velocity v at the cell surface r = R. The control volume has a volume V(t) bound by the
surface ∂V(t).

ρ, or semipermeable solute concentration C i
sp). The total amount of the property

Ψ(t) within the control volume V(t) is given by

Ψ(t) def=
∫
V(t)

ψ(r, t) dV. (3.1)

For a non-material interface the Reynolds transport theorem can be stated as

dΨ
dt

=
∫
V(t)

(
∂ψ

∂t
+ v · ∇ψ

)
dV +

∫
∂V(t)

dS · (u− v)ψ, (3.2)

which is a sum of contributions arising from the time-rate of change of ψ within the
volume V, convection of ψ across the membrane at the mass average velocity v (= 0
in the present case), and transport of ψ across the membrane due to a difference in
the mass average and membrane velocities.

Assuming the relevant symmetry conditions discussed previously (along with v =
0 and u = iru(t)), equations (3.1) and (3.2) assume the simpler forms

Ψ(t) = 4π
∫ R(t)

0
ψ(r, t)r2 dr (3.3)

and
dΨ(t)

dt
= 4π

∫ R(t)

0

∂ψ(r, t)
∂t

r2 dr + 4πR(t)2u(t)ψ(R(t), t). (3.4)

We first imagine the volumetric property ψ(r, t) to be the mass density ρ of the
fluid. Setting ψ = ρ = const. in (3.3) and (3.4) produces

dR
dt

= u, (3.5)

which is correct by definition. This result assumes the presence of salt and semiper-
meable solute does not change the mass density of the cytosolic fluid appreciably.

Next we take ψ(r, t) = C(r, t), where the field C may be taken to represent either
C i

salt or C i
sp. The field C satisfies a diffusion equation within the cell (Brenner &

Edwards 1993), namely

∂C

∂t
=

1
r2

∂

∂r

(
D∗r2 ∂C

∂r

)
. (3.6)

In evaluating (3.4) with this choice of ψ, Ψ(t) = N(t) is the total number of moles
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of salt or semipermeable solute within the cell. Substitution into (3.3) and (3.4) along
with use of the divergence theorem yields

dN
dt

= 4πR2
(
D∗

∂C

∂r
+ uC

)∣∣∣∣
r=R

. (3.7)

The quantity appearing in parentheses above is the flux (per unit area) of either salt
or cryoprotectant at the membrane into the cell. In the case of salt, this flux is zero,
whereas in the case of semipermeable solute this flux must be related to a kinemat-
ical relationship involving the relevant membrane properties, as next discussed. The
equivalence C = C (or φ = 0) at r = R has been made in (3.7), reflecting the absence
of organelles near the cell plasma membrane on account of the cell cortex.

4. Cell membrane motion: water transport

The driving force for membrane motion is a difference in net osmotic pressure on
either side of the membrane. This pressure is defined as

Π = CRgasT, (4.1)

with C the salt or semipermeable solute concentration (or the sum of both), Rgas the
gas constant (Rgas = 82.06 cm3 atm mol−1 K−1) and T the absolute temperature. For
an observer fixed on the membrane, the water passes through the membrane with
velocity −u. This velocity can be related to the osmotic pressure difference via a
Darcy’s law type relationship (Darcy 1856) characterized by a hydraulic permeability
Lp. In the absence of cryoprotectant, the relationship (noting (3.5) and the discussion
preceeding (3.7)) is given by

dR
dt

= −LpRgasT (Ce
salt − C i

salt|r=R(t)). (4.2)

With a semipermeable solute present, an additional contribution to the osmotic
pressure arises. Since the semipermeable solute is presumed capable of crossing the
membrane, though not without steric hindrance, a filtration coefficient σ is included
to account for the ease at which the semipermeable solute can pass through the
membrane. The value σ = 1 denotes a solute that is completely rejected by the
membrane (as is the case with salt), while σ = 0 implies resistance-free passage of
the solute across the membrane. The velocity u with which the membrane moves is
then

dR
dt

= −LpRgasT [(Ce
salt − C i

salt|r=R(t)) + σ(Ce
sp − C i

sp|r=R(t))]. (4.3)

5. Transmembrane solute transport

The flux of salt across the membrane is assumed always to be zero. From (3.7) this
gives the boundary condition imposed upon C i

salt at the membrane surface, namely

D∗salt
∂C i

salt

∂r
+ uC i

salt = 0, ∀(r = R(t), t). (5.1)

In the presence of semipermeable solute, however, a kinematical relationship for
the flux across the membrane must be derived. For this purpose, following an analysis
like that of Diamond & Katz (1974), consider an observer sitting on the membrane
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(figure 5). The membrane has thickness `, diffusivity Dm and filtration coefficient σ.
Assuming the membrane thickness ` to be much smaller than the membrane curva-
ture radius R, the steady-state convection–diffusion equation across the membrane
can be written as

u′(1− σ)
dC
dx′

= Dm d2C

dx′2
, (5.2)

along with the boundary conditions C = C i
sp at x′ = 0 and C = Ce

sp at x′ = `. The
solution for the flux (which is constant at all x′ positions in pseudosteady-state) is
determined to be

u′(1− σ)C −Dm dC
dx

= −u′(1− σ)
(

C i
sp − Ce

sp

1− eu′(1−σ)`/Dm − C i
sp

)
. (5.3)

With respect to a reference frame fixed in the cell as opposed to the membrane, the
velocity is simply

u′ = −u. (5.4)
This fact along with the requirement of continuity of flux at the cell membrane
boundary enables (3.7) to be written as

D∗sp
∂C i

sp

∂r
+ uC i

sp = u(1− σ)
(

Ce
sp − C i

sp

1− e−u(1−σ)`/Dm + C i
sp

)
, ∀(r = R(t), t). (5.5)

This can be expressed in a more familiar form by first defining

Psp
def= Dm/`, (5.6)

as the semipermeable solute permeability and examining the case where u is small
relative to Psp. Let Pem be the membrane Peclet number representing the ratio of
convective to diffusive driving forces and defined as

Pem
def=

u(1− σ)
Psp

� 1. (5.7)

The flux condition may be rewritten as

D∗sp
∂C i

sp

∂r
+ uC i

sp = Psp[Ce
sp − C i

sp + Pem( 1
2C

e
sp + C i

sp) +O(Pe2
m)]. (5.8)

Thus, limiting our analysis to small membrane Peclet number (of relevance to the
problem at hand) gives the relationship

D∗sp
∂C i

sp

∂r
+ uC i

sp = Psp(Ce
sp − C i

sp), ∀(r = R(t), t), (5.9)

which is the usual form of the kinematical membrane transport condition (Gilmore
et al. 1995).

6. Salt response

In this and following subsections, the volumetric response of an isolated spherical
cell due to a sudden spatially uniform change in the external bath salt concentration
will be considered, employing equations derived previously. The governing differential
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Figure 5. An idealized view of the cell membrane relative to an observer fixed on the membrane.
The water appears to flow from lower to higher concentrations. The membrane is characterized
by a diffusivity Dm, thickness ` and filtration coefficient σ.

equation inside the cell is (cf. (3.6))

∂C i
salt

∂t
=

1
r2

∂

∂r
(D∗saltr

2 ∂C
i
salt

∂r
) (6.1)

and at the membrane is (cf. (4.2))

dR
dt

= −LpRgasT (Ce
salt − C i

salt|r=R(t)), (6.2)

subject to the boundary conditions

C i
salt = finite, ∀(r = 0, t), (6.3)

and (cf. (5.1))

D∗salt
∂C i

salt

∂r
+

dR
dt
C i

salt = 0, ∀(r = R(t), t), (6.4)

as well as the initial conditions

C i
salt = C i

salt(0), at (t = 0), (6.5)
R = Ri, at (t = 0). (6.6)

In the above equations, C i
salt and C i

salt are related via (1.3) by

C i
salt = C i

salt

(
1− Vb

4
3πR

3

)
. (6.7)

It seems more convenient to express the initial condition in terms of C i
salt as opposed

to C i
salt as, prior to cell expansion or contraction the cell is usually in equilibrium

with a pre-initial bath concentration, and hence C i
salt(0) is known.

In principle, given the effective intracellular salt diffusivity D∗salt, the membrane
hydraulic permeability Lp, the external bath concentration Ce

salt, the initial cellular
salt concentration C i

salt(0) and the initial cell radius Ri, the above problem enables
C i

salt(r, t) and R(t) to be calculated for all 0 6 r 6 R and time t.

(a ) Cellular concentration distribution
A solution to equations (6.1)–(6.7) based on a pseudo-steady state assumption is

sought here. This assumption requires that the salt Peclet number, Pes, be small;

Pes
def=
|dR/dt||R|
|D∗salt|

� 1. (6.8)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Osmotic transport phenomena 2469

This condition is easily satisfied for most cases of interest. That is, for a cell of
radius R ∼ 5 µm, D∗salt ∼ 10−5 cm2 s−1, and a characteristic time of expansion
t ∼ 10 s, Pes ∼ 3 × 10−3. Here the symbol || refers to a suitable norm. In words,
the characteristic time for the movement of the membrane is much larger than the
characteristic time for diffusion of salt throughout the cell |R|2/|D∗salt|. In this case
the differential equations uncouple, and the problem simplifies to

0 =
1
r2

∂

∂r

(
D∗saltr

2 ∂C
i
salt

∂r

)
, (6.9)

subject to

C i
salt = finite, ∀(r = 0, t) (6.10)

D∗salt
∂C i

salt

∂r
= 0, ∀(r = R, t), (6.11)

where R is taken to be a constant. The trivial solution to this problem is that the
salt concentration C i

salt is constant. Invoking the fact that the number of moles of
salt within the cell is conserved, we have

C i
salt =

Nsalt

V
=

Nsalt
4
3πR

3
, (6.12)

or

C i
salt =

Nsalt
4
3πR

3 − Vb
. (6.13)

(b ) Volume evolution
Combining equations (6.2) and (6.13) yields the following equation for the size

evolution of the cell:

dR
dt

= −LpRgasT

(
Ce

salt −
Nsalt

4
3πR

3 − Vb

)
, (6.14)

subject to

R = Ri, at (t = 0). (6.15)

Note that the final cell volume Rf can be determined by the condition C i
salt = Ce

salt
as t→∞; using (6.13) this gives

Rf =
[

3
4π

(
Nsalt

Ce
salt

+ Vb

)]1/3

. (6.16)

Equation (6.14) can be solved to find R(t) via a separation-of-variables technique
by reformulating it as∫ R

Ri

x3

R3
f − x3 dx− 3

4π
Vb

∫ R

Ri

1
R3

f − x3 dx = Ce
saltLpRgasTt, (6.17)

which has the solution

C i
salt(0)LpRgasT

Ri
t =

η3
f − φi

1− φi

[
1− η +

η3
f − φi

η2
f

F (η, ηf)
]
, (6.18)
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where F is defined as

F (η, ηf)
def= 1

6 ln
(

(ηf − 1)2[(ηf − η)2 + 3ηfη]
(ηf − η)2[(ηf − 1)2 + 3ηf ]

)
+

1√
3

[
tan−1

(
2η/ηf + 1√

3

)
− tan−1

(
2/ηf + 1√

3

)]
, (6.19)

along with η = R/Ri, ηf = Rf/Ri and

φi =
Vb

4
3πR

3
i
, (6.20)

the ratio of osmotically inactive cell volume to initial cell volume. A plot of the func-
tion F (η, ηf) given in (6.19) is shown in figure 6. The actual cell volume responses of
spherical cells with φi = 0.46 and φi = 0.1 (characterizing hepatocyte and erythro-
cyte cells) are shown in figure 7. In this figure, the responses of the two cell types
(which, for the sake of the present analysis, differ only by the fraction of osmoti-
cally inactive intracellular volume) are compared against one another by fixing the
total cell deformation Vf/Vi. Since the curves cross for different φi at constant Vf/Vi,
the dependence of the response upon φi is not one of simply scaling a characteristic
curve. On the other hand, each of these two cell types will in general have different
membrane hydraulic permeabilities Lp and initial radii Ri; these, however, only enter
into the time variable and not explicitly into the curves, meaning that the cells are
self-similar in this respect. In other words, once ηf and φi are known, there is only
one curve describing the osmotic response independent of the choice of Lp or Ri (or
any of the other scaled variables). Whereas figure 7 compares the response keeping
Vf/Vi constant, one could also compare the two by keeping the ratio Ce

salt/C
i
salt(0)

fixed. The two are related by (cf. (6.13) and (6.16))

Ce
salt

C i
salt(0)

=
1− φi

η3
f − φi

. (6.21)

In figure 7, ηf was fixed while figure 8 shows the response of the two cell types upon
either doubling or halving the external salt concentration. A smaller inactive volume
fraction φi gives rise to a larger osmotic response.

(c ) Hydraulic permeability Lp

The curves shown in figure 8 suggest a possible protocol for measuring the
hydraulic permeability Lp. If cells are subjected to hyposmotic conditions, say
Ce

salt/C
i
salt(0) = 1

2 and the time taken for the cell to undergo half its volume expan-
sion t1/2 is measured, then Lp could be determined from (6.18) directly. For the case
of hepatocytes this halftime would be related to Lp by

Lp =
0.290Ri

C i
salt(0)RgasTt1/2

, ∀
(
φi = 0.46,

Ce
salt

C i
salt(0)

= 1
2

)
, (6.22)

while for erythrocytes Lp could be determined from

Lp =
0.457Ri

C i
salt(0)RgasTt1/2

, ∀
(
φi = 0.1,

Ce
salt

C i
salt(0)

= 1
2

)
. (6.23)

The coefficients 0.290 and 0.457 are functions of φi and Ce
salt/C

i
salt(0). They can

be determined by first calculating ηf from (6.21) and combining this with η3 =
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ηf = 0.7

0.8 0.9 1.1 1.2 1.3

Figure 6. Graph of F (η, ηf) as a function of η = R/Ri and ηf = Rf/Ri. The extreme values
ηf = 0.7 and ηf = 1.3 correspond to volume changes of Vf/Vi ' 0.34 and Vf/Vi ' 2.2, respectively.
The function has asymptotes at η = ηf .

(Ci
salt(0) LpRgasT ) t / Ri

Figure 7. Response of hepatocytes and erythrocytes to osmotic stress caused by varying the
external salt concentration such that the change in volume Vf/Vi is constant. The end point of
each curve corresponds to the cell completing 98% of its response.

η3
1/2 = 1

2(η3
f + 1) in equations (6.18) and (6.19). Note that η1/2 denotes the radius

corresponding to the cell volume V1/2 = Vi + 1
2(Vf − Vi), not to the midpoint value

of the radius.

(d ) Boyle van’t Hoff relationship
Finally, consider the case where, prior to setting the external bath concentration

to Ce, the bath is isosmotic Ce
iso†. This means that initially the internal cell concen-

tration is simply C i
salt(0) = Ce

iso and the cell has volume Viso. The final cell volume
V assumed by the cell upon equilibriating with the bath concentration Ce can be

† The salt subscript has been dropped in this subsection since this analysis is restricted to the salt
case.
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(Ci
salt(0) LpRgasT ) t / Ri

Ce
salt(0) / Ci

salt(0) = 2

Ce
salt(0) / Ci

salt(0) = 1/2

Figure 8. Response of hepatocytes and erythrocytes to osmotic stress caused by either doubling
or halfing the external salt concentration. Curve endpoints correspond to 98% response.

obtained directly from (6.21) and is conveniently written as

V

Viso
=
Ce

iso

Ce

(
1− Vb

Viso

)
+

Vb

Viso
. (6.24)

This is the classical Boyle van’t Hoff relationship. Given the isosmotic cell parameters
Viso and Ce

iso, the cell is stressed to a new condition characterized by V and Ce.
Equation (6.24) then allows for the determination of the osmotically inactive cell
volume Vb by equilibrium measurements of V versus Ce.

7. Salt and semipermeable solute response

In the presence of semipermeable solute, the osmotic response of a cell due to
unequal internal and external salt and semipermeable solute concentrations is gov-
erned by (6.1) and

∂C i
sp

∂t
=

1
r2

∂

∂r

(
D∗spr

2 ∂C
i
sp

∂r

)
, (7.1)

dR
dt

= −LpRgasT [(Ce
salt − C i

salt|r=R(t)) + σ(Ce
sp − C i

sp|r=R(t))] (7.2)

subject to the boundary conditions (6.3), (6.4) and

C i
sp = finite, ∀(r = 0, t), (7.3)

D∗sp
∂C i

sp

∂r
+

dR
dt
C i

sp = Psp(Ce
sp − C i

sp), ∀(r = R(t), t) (7.4)

the initial conditions (6.5) and

C i
sp = C i

sp(0), at (t = 0) (7.5)
R = Ri, at (t = 0). (7.6)

and the relations (6.7) and

C i
sp = C i

sp(1− φ+ kα+Kφ), ∀(r, t), (7.7)

where, of course, the osmotically inactive volume fraction φ is a function of R. This
problem is well defined, and, in principal, given the properties of the bath (Ce

sp,
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Ce
salt), cytosol (D∗sp, D∗salt), membrane (Lp, σ, Psp) and initial data (C i

sp(0), C i
salt(0),

Ri), the resulting fields C i
sp(r, t), C i

salt(r, t) and R(t) can be determined. The amount
of semipermeable solute within the cell Nsp(t) can then be determined from

Nsp(t) = 4π
∫ R(t)

0
C i

sp(r, t)r2 dr. (7.8)

Once again, because of the nonlinear nature of the boundary conditions, (6.4) and
(7.4), determining an exact solution is non-trivial.

(a ) Cellular concentration distribution
As in the case of pure salt transport, addressed in §6, a pseudo-steady state

assumption is generally appropriate and can be used to simplify the problem. It is
required that both the salt Peclet number (6.8) and the semipermeable solute Peclet
number be small. The latter requires

Pes
def=
|dR/dt||R|
|D∗sp|

� 1. (7.9)

This is equivalent to assuming that both salt and semipermeable solute diffuse
throughout the cell on a much shorter time scale than that associated with the
movement of the cell membrane. This leads to an uncoupling of the concentration
and radial evolution problems. The concentration problems may then be solved first.
It is important to note that, although (7.9) holds in most physical problems of inter-
est (see the discussion following (6.8)), an additional time scale is introduced in
the problem under consideration owing to the permeability Psp of the membrane
to the semipermeable solute. Since the rate of semipermeable solute entry into the
cell is characterized by Psp, the relevant Peclet number characterizing the diffusion
equation is

Pe =
PspR

D∗sp
, (7.10)

which is, in general, finite. In any case, it is not permissible to neglect the time
derivative in (7.1) as, even if Pe� 1, a physically important concentration gradient
(however small) will exist inside the cell, such that diffusion across the membrane
balances diffusion to the membrane and unsteady behaviour is realized.

The equations governing the evolution of the salt concentration are identical to
those derived in the absence of semipermeable solute (6.9)–(6.11). As such, the salt
concentration is found to be independent of r and given by

C i
salt =

Nsalt
4
3πR

3 − Vb
. (7.11)

In this pseudo-steady state limit, φ appears to be constant and independent of
time. As such, it is easiest to work with C i

sp (as opposed to C i
sp), where the equations

governing the semipermeable solute concentration C i
sp become

∂C i
sp

∂t
=

1
r2

∂

∂r

(
D∗spr

2 ∂C
i
sp

∂r

)
, (7.12)

subject to
C i

sp = finite, ∀(r = 0, t), (7.13)
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D∗sp(1− φ+ kα+Kφ)
∂C i

sp

∂r
= Psp(Ce

sp − C i
sp), ∀(r = R, t) (7.14)

and
C i

sp = C i
sp(0), at (t = 0), (7.15)

with R taken to be a constant. In the most general case, the semipermeable solute
diffusivity D∗sp may be a function of (among other variables) the osmotically inactive
volume fraction φ; however, since this pseudo-steady state analysis is akin to assum-
ing that R, and hence φ, is constant with respect to semipermeable solute diffusion
within the cell, D∗sp appears to be a constant when solving for the semipermeable
solute field C i

sp.
Momentarily ignoring the initial condition, (7.15), the solution C i

sp(r, t) may
be determined by assuming a separation-of-variables type solution of the form
C i

sp(r, t) = f(r)g(t). The general solution of (7.12)–(7.14) then is

C i
sp(r, t) = Ce

sp +
∞∑
n=1

An
sin(λnr/R)

r/R
e−λ

2
nD
∗
spt/R

2
, (7.16)

where the eigenvalues λn are taken to be the non-zero roots of the transendential
equation

βλn = tan(λn), (7.17)
with the coefficient β defined as

β
def=
(

1− PspR

D∗sp(1− φ+ kα+Kφ)

)−1

. (7.18)

Note that while λn are essentially constant over the (rapid) time scale of diffusion
they (slowly) change in time over the time scale of cell membrane expansion (cf.
(7.35)–(7.37)). Given the low Peclet conditions, in the derivation of (7.16), λn are
taken to be time constants. The values of λn for various values of PspR/[D∗sp(1−φ+
kα+Kφ)] are given in table 1. Since (7.17) is analytic, a Newton–Rhapson method
combined with a bisection method (used to keep the root bound and to guarantee
at least linear convergence) was used to calculate the eigenvalues (Press et al. 1994).
A useful property in computing these roots is that they are bound by the inequality

(n− 1)π < λn < nπ, ∀
(

0 <
PspR

D∗sp(1− φ+ kα+Kφ)
<∞, n > 1

)
. (7.19)

Roots of (7.17) may also be found in other standard texts (Abramowitz & Stegun
1972). The coefficients An appearing in (7.16) can be determined from the initial
condition, (7.15). Set t = 0 in (7.16), multiply by the function r sin(λmr/R), integrate
over r and use the orthogonality properties of the eigenfunctions to obtain

An = [C i
sp(0)− Ce

sp]
2
λn

sin(λn)− λn cos(λn)
λn − sin(λn) cos(λn)

. (7.20)

The above is equivalent to the pure salt problem considered in §6 when Psp = 0. In
this case the eigenvalues satisfy λn = tan(λn) resulting in the coefficients all being
identically zero, An = 0. As such, the erroneous result obtains C i

sp(r, t) = Ce
sp. This

is purely a consequence of the singular nature of the condition Psp = 0 because for
all Psp > 0 no matter how infinitely small, the semipermeable solute will eventually
either leave or enter the cell so as to equilibriate with Ce

sp.
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Table 1. The first five eigenvalues λn for various values of PspR/[D∗sp(1− φ+ kα+Kφ)]

PspR

D∗sp(1− φ+ kα+Kφ)
λ1 λ2 λ3 λ4 λ5

0 0 4.493 41 7.725 25 10.9041 14.0662
0.001 0.054 7668 4.493 63 7.725 38 10.9042 14.0663
0.01 0.173 032 4.495 63 7.726 55 10.9050 14.0669
0.1 0.542 281 4.515 66 7.738 20 10.9133 14.0733
0.5 1.165 56 4.604 22 7.789 88 10.9499 14.1017
0.9 1.504 42 4.691 08 7.841 23 10.9865 14.1301

1 π/2 3π/2 5π/2 7π/2 9π/2

2 2.028 76 4.913 18 7.978 67 11.0855 14.2074
5 2.570 43 5.354 03 8.302 93 11.3348 14.4080

10 2.836 30 5.717 25 8.658 70 11.6532 14.6869
100 3.110 18 6.220 44 9.330 81 12.4414 15.5214

1000 3.138 45 6.276 90 9.415 35 12.5538 15.6923

∞ π 2π 3π 4π 5π

Finally, the semipermeable solute concentration at the membrane r = R is given
by

C i
sp(R, t) = Ce

sp + [C i
sp(0)− Ce

sp]2
∞∑
n=1

sin2(λn)− λn sin(λn) cos(λn)
λ2
n − λn sin(λn) cos(λn)

e−λ
2
nD
∗
spt/R

2
.

(7.21)

(b ) Volume evolution
Direct substitution of the expressions for the salt (7.11) and semipermeable solute

(7.21) concentrations at the membrane into the evolution equation (7.2) yields

− 1
LpRgasT

dR
dt

= Ce
salt −

Nsalt
4
3πR

3 − Vb

+σ[Ce
sp − C i

sp(0)]2
∞∑
n=1

sin2(λn)− λn sin(λn) cos(λn)
λ2
n − λn sin(λn) cos(λn)

e−λ
2
nD
∗
spt/R

2
, (7.22)

subject to the initial condition

R = Ri, at (t = 0). (7.23)

As in the salt case, greater clarity of the problem is provided upon converting to
dimensionless variables. To this end, define the characteristic time scale for water
diffusion across the cell membrane as

tw
def=

Ri

C i
salt(0)LpRgasT

, (7.24)
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the characteristic time scale for semipermeable solute diffusion across the cell mem-
brane as

tsp
def=

Ri

Psp
, (7.25)

the salt driving force as

δsalt
def=

Ce
salt

C i
salt(0)

(7.26)

and the semipermeable solute driving force as

δsp
def= σ

C i
sp(0)− Ce

sp

C i
salt(0)

. (7.27)

Rewriting (7.22) in terms of τ = t/tw, η = R/Ri and these defined parameters; we
have

dη
dτ

=
1− φi

η3 − φi
− δsalt + δsp2

∞∑
n=1

sin2(λn)− λn sin(λn) cos(λn)
λ2
n − λn sin(λn) cos(λn)

e−λ
2
n(D∗sptw/R

2
i )(τ/η2),

(7.28)
η = 1, at (τ = 0), (7.29)

along with the eigenvalues representing the non-zero roots of

λn

1− R2
i

tspD∗sp(1− φ+ kα+Kφ)
η

= tan(λn), (7.30)

and the fact that φ is related to η by φ = φi/η
3. An important observation is that

the semipermeable solute does not influence the final cell radius Rf . This can be seen
explicitly in (7.28) where, since the membrane is permeable to the semipermeable
solute, the transient terms vanish at long time. The final cell radius can then be
calculated exactly, as in the salt-only case, from (6.16).

(c ) Effective semipermeable solute diffusivity
Solution of (7.28)–(7.30) requires knowledge of the effective diffusivity, D∗sp. In

general, this effective diffusion coefficient will not be equivalent to the cytosolic (i.e.
water) diffusivity Dcyt

sp . The reason for this is that the semipermeable solute may
tend to absorb into internal organelle membranes, where it displays a lateral mem-
brane diffusivity, Dsurf

sp (Clegg & Vaz 1985). As has already been discussed in §1, the
absorption of semipermeable solute to internal organelle membranes can be charac-
terized by the Henry’s law absorption coefficient, k. Given that the solute, during
its passage through the cytosol, will spend a certain amount of time absorbed to
organelle membranes, the effective diffusivity D∗sp 6= Dcyt

sp . An explicit expression for
the effective diffusivity exists in the special case (considered here) where the internal
cell organelles are spherical and of identical radius, a. This assumption implies that
the specific surface area, α, is given as

α = 3φ/a. (7.31)

In this case, accounting for semipermeable solute absorption onto the membranes of
internal cell organelles, the semipermeable solute diffusivity has the form (Edwards

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Osmotic transport phenomena 2477

& Davis 1995)

D∗sp =
Dcyt

sp

1− φ+ kα+Kφ

[
1− 3φ(1−K)

2 +K + 2Γ + φ(1−K − 2Γ ) +O(φ10/3)

]
, (7.32)

where Dcyt
sp is the semipermeable solute diffusivity in the cytosol and Γ is defined as

Γ def= k
Dsurf

sp

aDcyt
sp
, (7.33)

with Dsurf
sp the surface diffusivity of the semipermeable solute on the organelle mem-

branes. The form of D∗sp allows for the identification of another relevant time scale,
namely, the characteristic time associated with diffusion of the semipermeable solute
to the cell membrane through the cytosol. This time scale is defined as

tcyt
sp

def=
R2

i

Dcyt
sp
. (7.34)

The evolution of the cell radius (7.28) then takes on the form

dη
dτ

=
1− φi

η3 − φi
− δsalt + δsp2

∞∑
n=1

sin2(λn)− λn sin(λn) cos(λn)
λ2
n − λn sin(λn) cos(λn)

e−λ
2
nτw(D∗sp/D

cyt
sp )(τ/η2),

(7.35)
η = 1, at (τ = 0), (7.36)

along with the eigenvalues representing the non-zero roots of
λn

1− 1
τsp(1− φ+ kα+Kφ)

Dcyt
sp

D∗sp
η

= tan(λn), (7.37)

where the dimensionless time scales τw = tw/t
cyt
sp and τsp = tsp/t

cyt
sp represent the

respective ratios of water and semipermeable solute diffusion time scales across
the membrane relative to the semipermeable solute diffusion time scale within the
cytosol. These coefficients are expected to be large in accordance with the pseudo-
steady state hypothesis.

Strictly speaking, this volume evolution η(τ) depends upon (at most) eight dimen-
sionless constants;

η = η

(
τ

∣∣∣∣φi, δsalt, δsp, τw, τsp,
k

a
,K,

Dsurf
sp

Dcyt
sp

)
. (7.38)

Since (7.32) and (7.35) are quite complicated, analytical evaluation is difficult. Note
also that the eigenvalues (7.37) depend upon R(t), so are themselves changing in
time. Furthermore, the semipermeable solute diffusivity D∗sp is a function of the
instantaneous osmotically inactive volume fraction φ, itself a function of R(t). As
such, (7.32) and (7.35) have been analysed numerically in the present study. All
volume responses have been calculated using a Cash–Karp Runge–Kutta integration
scheme (Press et al. 1994). This algorithm takes fifth order Runge–Kutta steps where
each step size is adjusted so as to bound the fractional errors in η by a specified value.

(d ) Predicting kinetic volume changes: hepatocyte base case
Recapitulating, the main results of this article are those of (6.18) (and its equi-

librium corollary (6.24)) and (7.35)–(7.37). The former describes the cell volume
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Figure 9. Hepatocyte response during removal of a semipermeable solute. All other things being
equal, the effect of varying k/a is shown. The dashed line represents the response when absorp-
tion is assumed to be absent k = 0. Also shown is the computed base case when a relative error
of 10−2 is enforced.

changes caused by anisosmotic salt conditions (see figures 7 and 8) whereas the lat-
ter describes the volume kinetics caused by a disequilibrium in semipermeable solute
concentrations.

The semipermeable solute disequilibrium problem is considerably more rich than
the salt-only problem, primarily owing to the preponderance of transport mechanisms
in the former case. In this section, we consider in detail the solution of (7.35)–(7.37)
using a ‘base case’ corresponding to the thawing cycle of a hepatocyte (as depicted
qualitatively in figure 2).

The relevant hepatocyte parameters are listed in table 2. In this table, the inter-
nal organelle radius, a, has been chosen to accurately reflect the amount of internal
membrane to which the semipermeable solute can absorb. For a hepatocyte, the total
amount of membrane is roughly comprised of 98% internal (Alberts et al. 1994); given
that the hepatocyte volume is approximately 5000 µm3, this means the internal mem-
brane area is approximately 69 288 µm2. Distributing the total organelle membrane
area over the total inactive cell volume, and requiring organelles to be of identical
radius, a, gives a = 100 nm. The Henry’s law absorption coefficient k, scales like
the thickness of a characteristic organelle membrane times the relative partitioning
of the semipermeable solute into the membrane. Assuming the organelle membrane
thickness is about 10 nm and the semipermeable solute partitions 10 fold into the
membranes gives k = 100 nm, which is the value appearing in table 2. The values of
other variables, such as Psp and Lp, correspond to characteristic values (Gilmore et
al. 1996) for a range of cryoprotectant and cell types.

The ‘base case’ (table 2) response along with its dependence upon absorption is
shown in figure 9. The cell undergoes a peak volume expansion of roughly 140%, a
value at which the cell might indeed lyse—an eventuality that can be easily included
into the analysis, though we have not done so here. Absorption has a pronounced
effect on the volume response. Hence, the ‘apparent’ values of Psp and Lp depend
markedly on absorption. This is further discussed in the next subsection, where a
definitive way of measuring Psp and Lp from the volume response is addressed.

Figure 9 also shows the accuracy of the Cash–Karp Runge–Kutta integration
scheme used to compute the response. The fractional error at each point is defined
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Table 2. Hepatocyte: base case
(Characteristic values of the relevant parameters for a hepatocyte. This ‘base case’ corresponds
to removing the cryoprotectant from the cell in isosmotic salt conditions. The dimensionless
response η(τ) is unique given the last eight coefficients in the table.)

symbol value units

T 22 ◦C
Vi 5000 µm3

Vb 2300 µm3

σ 0.9 —
Dcyt

sp 10−6 cm2 s−1

Dsurf
sp 10−7 cm2 s−1

K 0 —
a 10−5 cm
k 10−5 cm
Lp 1.0 µm min−1 atm−1

Psp 0.002 cm min−1

C i
salt(0) 0.26 mol l−1

Ce
salt 0.26 mol l−1

C i
sp(0) 1.0 mol l−1

Ce
sp 0 mol l−1

Ri 10.6 µm
tw 101 s
tsp 31.8 s
tcyt
sp 1.13 s

φi 0.46 —
δsalt 1 —
δsp 3.46 —
τw 89.8 —
τsp 28.3 —
K 0 —
k/a 1 —

Dsurf
sp /Dcyt

sp 0.1 —

as the difference between the fifth- and fourth-order Runge–Kutta estimations of η
computed at a point n+ 1 and normalized by the fifth-order η computed at the pre-
vious step n. The step size is adjusted to bound this error at each step by a specified
value. The accuracy of the solution with an error as large as 10−2 requires only six
steps across the domain and gives values which are very close to convergence using
an error of 10−8.

If, prior to removing the semipermeable solute from the cell (as in figure 9), the
cell was immersed in a solution of salt and semipermeable solute, the response shown
in figure 10 would follow. (The only difference between this case and the base case
is a change of sign of δsp, where now the initial semipermeable solute concentration
C i

sp(0) inside the cell is zero, while the external solute concentration Ce
sp is held at

1 mol l−1.) Also shown is the effect of internal membrane absorption.
Figure 11 shows the sensitivity of the response of the base case due to a change in

the semipermeable solute permeability Psp, while figure 12 shows the sensitivity due
to a change in the hydraulic permeability Lp. In terms of the seven dimensionless
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Figure 10. Hepatocyte response during loading of a semipermeable solute. The difference from
the base case data is a switch in the sign of the semipermeable solute driving force, δsp = −3.46.
All other things being equal, the effect of varying k/a is shown.

Figure 11. Hepatocyte response during removal of a semipermeable solute. All other things
being equal, the effect of varying τsp is shown.

variables, the former represents a change in τsp while the latter a change in τw. The
magnitude of the peak decreases as Psp is increased or Lp is decreased. Furthermore,
the dimensionless time at which the peak occurs is lessened with this adjustment
of Psp or Lp. Importantly, in figure 12, since Lp is changing, tw is also changing ,
and, as such, the true time, t, at which the peak occurs is actually increasing with
decreasing Lp. These last two figures highlight the importance of including membrane
absorption in the interpretation of results, for a 50% volume expansion might, lacking
an unequivocal way of determining parameters, be attributed to either: (i) lower
absorption; (ii) larger Psp; or (iii) smaller Lp.

(e ) Experimental protocol for the determination of k, Psp and Lp

The practical utility of the preceeding results is that they can be directly used
to interpret ‘osmotic-challenge’ experiments, and thereby used to deduce membrane
transport parameters in an unequivocal fasion.

In this subsection, a protocol is outlined, based upon the above, allowing the direct
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Figure 12. Hepatocyte response during removal of a semipermeable solute. All other things being
equal, the effect of varying τw is shown. Also, the characteristic water time tw changes from 101 s
to 253 s as Lp varies from 1.0 to 0.4.

determination of Psp and Lp from experimental measurements of the cell volume
response to a homogeneous osmotic imbalance.

First, we note that the adsorption parameter, k, can be obtained by equilibrium
measurements. It follows directly from (1.4), (1.6) and (7.31) that, in the presence
of a semipermeable solute and at equilibrium, the amount of semipermeable solute
within the cell is related to the external bath concentration by

Nsp

V
= Ce

sp

(
1− φ+ 3φ

k

a
+Kφ

)
. (7.39)

Since Nsp, V , φ, K and Ce
sp are all known or measurable, (7.39) allows for the the

determination of k/a directly from the equilibrium state of the cell.
Consider the cell to contain semipermeable solute and to be immersed in an isos-

motic bath that, at least initially, contains no semipermeable solute. The concen-
tration gradient of semipermeable solute across the cell membrane forces the cell
volume to expand, reaching a peak volume V = Vpeak at time t = tpeak (see figure 9).
This peak is achieved as a consequence of a balance between the drop in cellular
salt concentration (as a result of the expansion of the cell) and the semipermeable
solute concentration still relatively elevated within the cell. It is possible to deduce
from this peak value alone both Psp and Lp on the basis of the preceding analy-
sis. This procedure involves first determining Psp (independently of Lp), and second
determining Lp as next described. (This procedure sharply contrasts with the exist-
ing methodology for determining membrane parameters (Gilmore 1996) using the
so-called K–K model (Kedem & Katchalsky 1958).)

The ability to independently determine Psp and Lp from the peak volume owes
to the fact that two pieces of information are resident in the time (tpeak) of the
peak volume: (1) the volume V = Vpeak; and (2) the time derivative of the radius
(dR/dt) = 0. The equations for determining Psp can be deduced from condition 1.
Using (7.35)–(7.37), the following equation (implicit in Psp and independent of Lp)
holds:

ω = 2
∞∑
n=1

sin2(λn)− λn sin(λn) cos(λn)
λ2
n − λn sin(λn) cos(λn)

e−λ
2
nx, (7.40)
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Figure 13. The semipermeable solute permeability Psp (or y) can be uniquely determined from
the peak quantities tpeak and Vpeak appearing in the dimensionless variables x and ω.

with the eigenvalues being the non-zero roots of

λn
1− y = tan(λn). (7.41)

In the above, three dimensionless quantities have been defined:

x
def= D∗sp|peak

tpeak

R2
peak

, (7.42)

ω
def=

Ce
salt[Vpeak − Vb]− C i

salt(0)[Vi − Vb]
σ[C i

sp(0)− Ce
sp] [Vpeak − Vb]

, (7.43)

y
def= Psp

Rpeak

[1 + (3k/a+K − 1)φiVi/Vpeak]D∗sp|peak
. (7.44)

All the parameters appearing in these expressions (except for Psp which is sought
in the analysis) are known or measurable. The effective diffusivity D∗sp|peak can be
obtained from (7.32) as

D∗sp|peak =
Dcyt

sp

1 + (3k/a+K − 1)φiVi/Vpeak

[
1− 3φiVi/Vpeak

2 + 2Γ + (1− 2Γ )φiVi/Vpeak

]
,

(7.45)
with the osmotically inactive volume fraction related to V by φ = φiVi/V . By mea-
surement of {tpeak, Vpeak}, x and ω can be calculated directly from (7.42) and (7.43).
This then allows for the solution of (7.40) and (7.41) for y, which in turn gives Psp
via (7.44). The relationship between x, ω and y is shown graphically in figure 13. The
behaviour shown, and embodied in (7.40)–(7.44), is general for any homogeneous cell
expansion/contraction, not simply that of the explicitly outlined protocol.

Having uniquely determined Psp from the above, Lp can be calculated from the
solution η(τ). This is an iterative procedure, involving selection of a value for Lp,
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Table 3. Human sperm cell
(Experimental data measured during the removal of cryoprotectant from human sperm.)

symbol value units

T 22 ◦C
Vi 28.2 µm3

Vb 14.1 µm3

Dcyt
sp 10−6 cm2 s−1

Dsurf
sp 10−7 cm2 s−1

K 0 —
C i

salt(0) 0.26 mol l−1

Ce
salt 0.26 mol l−1

Ce
sp 0 mol l−1

DMSO ethylene glycol glycerol propylene glycol

σ 0.98 0.77 0.93 0.95 —
Ci

sp(0) 1.0 2.0 1.0 1.0 mol l−1

tpeak 2.50 1.58 1.21 1.20 s
Vpeak/Vi 1.73 1.31 1.40 1.52 —

calculating the response η(τ), and determining values of tpeak and Vpeak. The proper
choice of Lp is obviously that which produces the measured values of tpeak and Vpeak.

As a brief example, consider the base case, assume that Psp and Lp are unknown.
Assume that we measure a peak at time tpeak = 20 s of magnitude Vpeak/Vi = 1.5.
Solving (7.40)–(7.44) yields a value of Psp = 3.92× 10−3 cm min−1 (assuming k/a =
1) or a value of Psp = 1.67× 10−3 cm min−1 (assuming k/a = 0). The solution η(τ)
can then be iterated to find that Lp = 0.660 and 0.698 µm min−1 atm−1 for k/a = 1
and 0, respectively.

(f ) Comparison with former model: human sperm
An alternative approach to the theory outlined here is provided by the K–K

model (Kedem & Katchalsky 1958). The K–K model differs from the present treat-
ment in that it does not provide a detailed mass transport analysis of an expand-
ing/contracting cell. It assumes the validity of equation (6.24) a priori (ideal osmome-
ter assumption) and regards kinetic swelling as a volume response of cells to osmotic
stimuli, independent of cell shape, or possible asymmetries in the system. It assumes
instantaneous mixing of solute inside the cell, both for the cases of salt and semiper-
meable solute, thus neither solute diffusivity, cytosolic structure or absorption phe-
nomena are accounted for in the K–K model.

In this section, the kinetic volume data collected by Gilmore et al. (1995) (and
used, by them, to deduce values of Psp and Lp on the basis of the K–K model for
human sperm), are reinterpreted on the basis of the protocol described in the pre-
ceeding section. It is essential to note that human sperm are highly non-spherical
(the osmotically active domain apparently being cylinder-like); nevertheless, appli-
cation of the theory outlined here is not without some justification. First, the K–K
model itself makes no distinction of the role of cell shape. Second, the method used
by Gilmore et al. (1995) for measuring volume expansion is that of a Coulter counter
which again is unable to discriminate between spherical and non-spherical cell shapes.
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Table 4. K–K model versus present model
(A comparison of calculated values for Psp and Lp using the least-squares type fit applied to the
K–K model and the peak point calculation outlined here.)

present model︷ ︸︸ ︷
symbol cryoprotectant K–K model k/a = 0 k/a=1

DMSO 0.8 2.39 5.31
Psp ethylene glycol 7.9 4.45 12.8

(×10−3 cm min−1) glycerol 2.1 4.70 12.6
propylene glycol 2.3 4.80 11.9

DMSO 0.84 1.28 1.17
Lp ethylene glycol 0.74 0.67 0.63

( µm min−1 atm−1) glycerol 0.77 1.64 1.55
propylene glycol 1.23 2.04 1.90

In contrast with the method for deducing Psp and Lp from the K–K model (least-
squares type fit adjusting both Psp and Lp until the theoretical curve best approxi-
mates the experimental data), in the protocol outlined here only the experimentally
determined tpeak, Vpeak values are used. Having deduced Psp and Lp on this basis, a
consistancy check is then made by comparing the volume response for all t with the
experimental data.

The relevant physical data for the human sperm cell and the various cryoprotec-
tants are shown in table 3. Values for tpeak and Vpeak/Vi (read from graphs) are also
tabulated.

Table 4 shows the results for Psp and Lp using both the K–K model and the
protocol outlined in the previous subsection. The values of Psp and Lp deduced here
differ (both for k/a = 0 and 1) from those determined by the K–K model, though
generally by less than an order of magnitude. Higher organelle absorption k/a = 10
or k/a = 100 leads to dramatic differences between the two theories. For example, the
permeability, Psp, of glycerol increases from Psp = 4.7×10−3 at k/a = 0 to 86.2×10−3

at k/a = 10 and 953 × 10−3 at k/a = 100. These high absorption coefficients are,
however, not expected at least for the cryoprotectants shown (see Diamond & Katz
(1974) for representative lipid bilayer partition coefficients).

The results of table 4 reveal that unequivocal values of membrane permeation
properties, in the presence of semipermeable solutes, require a detailed analysis, as
outlined here, and that substantial errors can be made particularly if the semiperme-
able solute (as in the case of a cryoprotectant) is capable of absorbing significantly
into the lipid bilayers of internal organelles.

Figures 14 and 15 show comparisons between the theoretical predictions of tables 3
and 4 and the experimental data in the cases of propylene glycol and DMSO. The
reasonable agreement between theory and experiment lends support to the analysis
as well as the protocol for determining Psp and Lp from peak data.

8. Arbitrary cell shapes and future directions

The preceding analysis has dealt solely with the case of a spherical cell undergoing
radial deformations. In general, anisotropic deformations of cell membranes, or at
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Figure 14. A comparison of experimental (human sperm) cell volume response with theoretical
predictions for the case of propylene glycol. Experimental data taken from Gilmore et al. (1995).

Figure 15. A comparison of experimental (human sperm) cell volume response with theoretical
predictions for the case of DMSO. Experimental data taken from Gilmore et al. (1995).
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least non-spherically isotropic deformations can be expected owing to non-spherical
cell shapes and spatially inhomogeneous osmotic stresses. The comparisons made
in §7 f to sperm must be considered in this light preliminary until a more careful
analysis of shape effects has been made.

In this final section, we discuss how the preceeding formalism may be general-
ized to address cases of non-spherical cell deformations, and consider possible future
directions.

We begin with the case of a non-spherical cell suddenly exposed to anisosmotic
conditions in the absence of a semipermeable solute. This is the case addressed in
§6 for a spherical cell undergoing a homogeneous osmotic stress. First note that for
the case of an inhomogeneous deformation, or a non-spherical cell shape, the cellular
fluid velocity v need not be zero (see §2); however, v will scale with the velocity
u of the cell membrane and, as such, the pseudo-steady-state approximations made
earlier still hold. The generalization of (6.9)–(6.11) can then be written

∇2C i
salt = 0, (8.1)

n · ∇C i
salt = 0, ∀(r ∈ plasma membrane), (8.2)

where n is the instantaneous unit normal of the cell membrane. This problem has
the trivial yet important solution

C i
salt =

Nsalt

V (t)
(8.3)

or

C i
salt =

Nsalt

V (t)− Vb
, (8.4)

which reduces to (6.12) and (6.13) in the limit of a sphere, V = 4
3πR

3. The volume
response of the cell is governed by (cf. (6.14) as well as (3.3)–(3.5))

1
A(t)

dV
dt

= −LpRgasT

[
Ce

salt −
Nsalt

V (t)− Vb

]
, (8.5)

subject to
V = Vi, at (t = 0) (8.6)

and with a known relationship between V (t) and A(t). Equations (8.5) and (8.6) can
be solved for V (t), knowing Ce

salt, as has been done elsewhere (Gilmore et al. 1995).
In the case wherein a semipermeable solute is also present, equations (7.12)–(7.15)

assume the forms
∂C i

sp

∂t
= D∗sp∇2C i

sp, (8.7)

D∗sp(1− φ+ kα+Kφ)n · ∇C i
sp = Psp(Ce

sp − C i
sp), (8.8)

C i
sp = C i

sp(0), at (t = 0). (8.9)
This boundary-initial-value problem possesses a non-trivial solution that is strong-
ly dependent on instantaneous cell shape. The result for the important case of a
cylindrical membrane is discussed in a subsequent article (Batycky et al. 1998).

In addition to generalizing the foregoing to non-spherical membrane deformations,
fruitful avenues of future theoretical inquiry might include the roles played by close-
ly neighbouring cells in multicell assemblages on osmotic expansion and contraction,
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‘slow’ or ‘perturbation’ expansions or contractions of cells that can be influenced
by active membrane transport mechanisms, simultaneous heat transfer (and ice for-
mation) in non-isothermal environments, and shifts in metabolic reaction equilibria.
It is nonetheless key that theoretical analyses be accompanied by reasoned experi-
ments whereby theoretical postulates can be tested and new unexpected phenomena
revealed. In this context, particularly in light of the present study, an experimental
study aimed at quantifying the degree of intracellular membrane absorption for a
variety of cryoprotectants is clearly necessary.
This work was partly supported by NIH grant HD 093-13. D.A.E. acknowledges support provided
by an NSF CAREER Grant Award.
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